需要用到的库
1 | import pandas as pd |
使用dlib获取人脸上68个特征点
1 | detector = dlib.get_frontal_face_detector()#创建一个容器 |
处理视频,使用openCV获取视频每一帧
1 | videoCapture = cv2.VideoCapture() |
与提取特征点相结合,提取视频中每一帧的人脸特征点
1 | videoCapture = cv2.VideoCapture() |
用来获取特征向量的方法
1 | def getVector(img_path,leftEye=(0,0),rightEye=(0,0)): |
展示正在处理图片的方法,一边处理,一遍展示图片,可以查看特征点提取的效果
1 | def getVectorandDisplay(img_path,leftEye=(0,0),rightEye=(0,0)): |
将得到的特征向量保存到excel中
1 | def save_data(filePath,data): |
从excel文件中读取文件名和瞳孔位置信息并得到特征向量
1 | data_frame=pd.read_excel('瞳孔中心位置表.xlsx',sheet_name='Sheet1') |
经过前几步得到特征向量之后,开始进行对数据的降维
通过公式,手动实现的MDS算法
1 | class MyMDS: |
对数据降维并作图
1 | data_frame1=pd.read_excel('D:\\Study\\毕业设计\\数据集\\正常眼位\\特征向量.xlsx',sheet_name='Sheet1') |
使用sklearn的mds降到二维
使用按照公式的mds降到二维
使用matlab对mds降到三维的数据进行可视化
使用流形进行降维
1 | iso=Isomap(n_components=2) |
使用sklearn的ISOMAP流形降到二维
使用matlab对流形降到三维的数据进行可视化
使用PCA进行降维
1 | from sklearn.decomposition import PCA |
使用sklearn的PCA降到二维
使用matlab对PCA降到三维的数据进行可视化
处理后的数据
1.jpg
1 | [154.00324671902212, 68.6804193347711, 55.31726674375732, 140.42791745233566, 83.23460818673925, 101.40019723846694] |
瞳孔坐标:
1 | leftEye,rightEye=(1215,1587),(1923,1495) |
眼角间距
1 | left=284.92981591964013 |
左眼六个特征点:
1 | 37 : 1069 1636 |
右眼六个特征点:
1 | 43 : 1821 1555 |
2.jpg
1 | [262.00763347658403, 161.533278305122, 69.18092222571191, 118.72657663724664, 91.78235124467012, 179.2344832893492] |
瞳孔坐标:
1 | leftEye,rightEye=(1241,1581),(1969,1605) |
眼角间距
1 | left=367.96738985948195 |
左眼六个特征点:
1 | 37 : 979 1579 |
右眼六个特征点:
1 | 43 : 1840 1666 |
3.jpg
1 | [22.02271554554524, 13.0, 3.1622776601683795, 11.313708498984761, 10.198039027185569, 16.1245154965971] |
瞳孔坐标:
1 | leftEye,rightEye=(60,116),(122,119) |
眼角间距
1 | left=30.805843601498726 |
左眼六个特征点:
1 | 37 : 38 117 |
右眼六个特征点:
1 | 43 : 115 126 |
降到三维的数据,使用matlab画图看看
画图命令1
2
3>> scatter3(data(1:40,1),data(1:40,2),data(1:40,3),'r','filled')
>> hold on
>> scatter3(data(40:82,1),data(40:82,2),data(40:82,3),'b','filled')
用mds的数据1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82[[-2.49399757e-01 1.45448453e-01 3.14430200e-01]
[ 3.10091160e-02 1.53125557e-01 4.07341840e-02]
[-1.88586289e-02 2.18464862e-01 1.97185188e-01]
[ 6.86836401e-02 1.36796820e-01 -1.87589551e-01]
[ 2.77593027e-01 -1.61774982e-01 -2.86602565e-01]
[ 1.93983048e-01 1.92304257e-01 -3.13370198e-01]
[ 1.27267756e-01 -7.67659896e-02 -4.52851354e-02]
[-3.00611225e-02 1.63941239e-01 -3.36880102e-03]
[-6.22824906e-02 1.32722780e-01 1.23812752e-01]
[ 1.08006730e-02 -1.01588882e-01 2.31511499e-02]
[ 3.30004053e-02 -5.20796132e-02 -2.32344974e-02]
[-1.31601481e-01 8.29467510e-02 -1.43420491e-01]
[ 7.09714573e-02 5.86236382e-03 1.09234383e-01]
[-4.90822001e-01 8.49045714e-02 5.55708935e-01]
[ 3.18659410e-01 -1.08741706e-01 -4.29548153e-01]
[-9.27353852e-02 1.99098281e-01 -2.09444243e-01]
[ 1.34360044e-01 1.89308097e-02 1.80100627e-01]
[-4.97027359e-01 1.62379395e-01 4.83063348e-01]
[ 3.40908669e-01 -2.75238568e-02 -4.23000292e-01]
[-1.83064599e-01 2.06038642e-01 1.82165215e-01]
[ 2.51228500e-01 2.98243289e-03 1.21059295e-01]
[ 8.41723581e-02 3.07782913e-02 9.29748861e-02]
[ 3.23868293e-01 2.17797782e-02 -3.53623052e-01]
[-4.55957829e-01 1.05119658e-01 4.94820768e-01]
[ 3.63650091e-01 1.13752464e-01 -2.01811256e-01]
[-8.83835306e-02 1.83714631e-01 4.15943063e-01]
[ 1.36501334e-01 1.75586390e-01 9.49316099e-03]
[ 1.13098846e-01 1.64817407e-01 8.92369850e-02]
[ 4.39526042e-01 5.51961444e-02 -4.08340788e-01]
[-3.14714054e-01 1.60718539e-01 5.32234194e-01]
[ 2.31937359e-02 1.90351665e-01 1.71290778e-01]
[ 2.59390470e-01 5.34437674e-02 1.52806729e-01]
[ 2.28086933e-01 1.05735501e-01 -5.73952252e-02]
[ 4.84280966e-01 -1.59859399e-02 -5.35017086e-01]
[-1.57558147e-01 1.22139474e-01 4.87683144e-01]
[ 4.89499178e-02 1.15521286e-01 2.01601157e-01]
[-2.01947203e-01 3.97304916e-02 1.07735921e-02]
[-8.78445428e-03 1.73018151e-01 5.93306139e-02]
[-6.34135328e-02 2.42497499e-01 2.32621892e-01]
[ 1.86815757e-01 2.40863576e-01 -8.08242379e-02]
[ 3.18872412e-02 -1.65928475e-01 7.24810266e-02]
[ 4.67124151e-02 -1.23505811e-01 -6.81669937e-02]
[-8.58688090e-02 -1.75471927e-01 4.04126955e-02]
[ 2.50412135e-02 -5.84173306e-03 -6.38159360e-02]
[ 4.45272382e-04 -9.55700418e-02 -4.17753037e-02]
[ 7.68480180e-02 -2.03036729e-01 -3.25003115e-02]
[-5.13683882e-02 1.30150314e-02 1.27008183e-02]
[-1.19095616e-01 2.63935845e-02 1.67217121e-01]
[-1.55731569e-01 -6.13164643e-02 -5.79288461e-02]
[ 2.55787251e-02 1.54398406e-01 -4.43651283e-02]
[-5.81074023e-02 -5.96704110e-02 -1.92004874e-02]
[-1.66512406e-01 1.74282574e-01 6.09214145e-02]
[ 6.28739918e-03 -1.98723992e-01 -1.04908191e-01]
[-8.15111783e-02 -2.29574457e-02 1.73317682e-02]
[ 1.56155364e-01 -1.36447088e-01 1.68105432e-02]
[ 7.53911245e-02 6.32822576e-02 -9.99458715e-02]
[-5.99027304e-02 -1.50068789e-01 -9.64137979e-03]
[ 8.24694650e-03 -3.91661560e-02 2.51559303e-02]
[-1.01531932e-02 -3.77815004e-02 -4.99666618e-03]
[-5.35054474e-02 -7.30392125e-02 8.76396443e-02]
[ 1.37050875e-01 -3.77276138e-02 -1.41287900e-01]
[-1.08268466e-01 -1.26201413e-01 -9.08894233e-03]
[-7.10319703e-02 -3.04260893e-01 1.14380947e-01]
[-1.04416373e-02 -4.30733311e-02 1.10783214e-02]
[ 8.05725900e-02 1.00358944e-01 -7.19735073e-02]
[-1.77939595e-01 3.78657096e-01 -5.82221823e-01]
[-6.27098576e-02 -2.50191890e-01 7.97481714e-02]
[ 5.84417931e-03 -9.89380078e-02 -1.61896697e-02]
[-9.34074536e-02 -3.30539259e-03 5.02316859e-02]
[-5.28025442e-03 -2.36356795e-01 2.72266260e-01]
[ 7.50397456e-02 -1.01385009e-01 2.79782957e-02]
[-1.48321924e-01 -6.44991629e-01 -7.80080191e-02]
[-1.11741020e-02 -6.15989830e-01 -1.50236678e-01]
[-8.38360269e-01 -2.65106533e-02 8.05583241e-02]
[-2.91953568e-03 -2.88930589e-01 -8.97861457e-02]
[-1.87777170e-01 -4.03518537e-01 -1.18786983e-02]
[ 1.98221038e-01 1.06606067e-01 -1.78341096e-01]
[-3.43053807e-02 1.05110180e-02 9.56699036e-02]
[ 2.28586840e-01 -5.00239012e-01 -2.63835005e-01]
[ 5.06795497e-02 2.62819320e-01 -1.48286343e-01]
[ 9.95341103e-02 -6.85937008e-02 5.28356041e-02]
[-2.37817208e-01 3.52164814e-01 -5.76620203e-01]]
用流型的数据1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82[[-0.52475938 -0.20655011 -0.08751006]
[-0.04211118 -0.28677996 0.01283477]
[-0.23290125 -0.31975843 -0.02640291]
[ 0.20882962 -0.17784644 0.11685629]
[ 0.48612152 0.04415368 -0.20709801]
[ 0.40810652 -0.29761106 0.06016139]
[ 0.11023122 0.17601449 0.03529748]
[ 0.005006 -0.24880078 0.06481727]
[-0.14672938 -0.20884888 0.00231434]
[-0.00136789 0.18036852 0.05904796]
[ 0.04346648 0.13484799 0.0517976 ]
[-0.2086759 0.01539688 0.03089669]
[-0.02166921 0.05615281 0.05751615]
[-0.9323577 -0.28793163 -0.14319581]
[ 0.7438372 -0.06377497 -0.32139509]
[ 0.15989466 -0.11604386 0.30746877]
[-0.06454647 -0.06882085 -0.09234102]
[-0.86085057 -0.29155556 -0.13762266]
[ 0.69298832 -0.2106876 -0.30563432]
[-0.2975549 -0.19136725 -0.00841271]
[ 0.07038077 -0.12780482 -0.11184737]
[-0.02744121 0.02193468 0.03589945]
[ 0.6181052 -0.29953859 -0.24259442]
[-0.86620269 -0.28489955 -0.14038095]
[ 0.40462772 -0.30743304 -0.09766412]
[-0.4880671 -0.4144327 -0.08075041]
[ 0.07753252 -0.27100687 -0.02250921]
[-0.02967027 -0.20548343 -0.04672175]
[ 0.64824562 -0.3104454 -0.32720432]
[-0.79625244 -0.29221978 -0.13054429]
[-0.1708873 -0.28771935 -0.08488609]
[-0.01408447 -0.16517332 -0.11130276]
[ 0.20009263 -0.22473314 -0.07211356]
[ 0.81381735 -0.29720148 -0.43431405]
[-0.63170911 -0.41809868 -0.14217846]
[-0.14625525 -0.24858571 -0.08234401]
[-0.23634134 0.06116928 0.04892996]
[-0.12169358 -0.27794344 0.01480048]
[-0.30445435 -0.32216279 -0.06952904]
[ 0.19751155 -0.3148039 0.04824583]
[-0.01033803 0.2991925 0.07438641]
[ 0.11639365 0.19090486 0.08385814]
[ 0.00803306 0.2946195 0.12960284]
[ 0.08978154 0.04896987 0.08392962]
[ 0.01349591 0.18915705 0.04375113]
[ 0.05596794 0.30491331 0.08185548]
[-0.01238723 0.10574221 0.08974813]
[-0.17636472 0.01132155 0.04554243]
[-0.13887366 0.20196536 0.06782757]
[ 0.05540129 -0.1217556 0.11746257]
[ 0.02419252 0.1430622 0.08017393]
[-0.23199722 -0.11973721 -0.02459098]
[ 0.03850406 0.29769732 0.02310231]
[-0.11678057 0.1203215 0.03562951]
[ 0.02983969 0.23687132 0.10040883]
[ 0.13568508 -0.07715057 0.0646312 ]
[ 0.01909661 0.23559501 0.09642388]
[-0.00676058 0.08938025 0.05692723]
[ 0.00422334 0.09796682 0.04683499]
[-0.02535596 0.09221617 0.09413002]
[ 0.18839983 0.06549906 0.05666795]
[-0.11109553 0.21801478 0.04193411]
[-0.12927412 0.45430992 0.10660688]
[ 0.01498223 0.10207633 0.05911291]
[ 0.09477913 -0.18507621 0.03382207]
[ 0.58050952 -0.35921256 0.59887673]
[-0.01366191 0.3867615 0.13295155]
[-0.01234158 0.18022319 0.03386664]
[-0.1450861 0.0811554 0.03249574]
[-0.0959389 0.46617629 0.16799436]
[ 0.03331177 0.21424554 0.06412596]
[ 0.19085693 0.77608487 -0.26830046]
[ 0.275868 0.68862416 -0.34028163]
[-0.95682389 0.73859395 -0.12494235]
[ 0.04485674 0.39321044 -0.04296051]
[ 0.01679716 0.61337447 0.10119243]
[ 0.24806421 -0.20181272 -0.01433096]
[-0.08224569 0.06483277 0.06079385]
[ 0.43870353 0.4925348 -0.44040973]
[ 0.24468503 -0.22743142 0.18590908]
[ 0.02641446 0.10096763 0.10855583]
[ 0.55427047 -0.34838057 0.63429734]]
使用pca得到的数据1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82[[ 0.39873983 -0.0954298 -0.01807273]
[ 0.02899003 -0.14997171 -0.03957421]
[ 0.18471675 -0.19573283 -0.08449226]
[-0.16238917 -0.14918477 0.06989039]
[-0.35487308 0.06213577 0.04098967]
[-0.33337612 -0.22360492 0.08426196]
[-0.11859844 0.05511917 -0.06692357]
[ 0.03270696 -0.14437857 0.0175223 ]
[ 0.14513263 -0.11564825 -0.01946778]
[-0.00152372 0.09521567 -0.02486575]
[-0.0406502 0.04572753 -0.01302994]
[-0.02357004 -0.06403917 0.05712957]
[ 0.03809298 -0.01896027 -0.09714492]
[ 0.72321432 -0.01622871 0.11513574]
[-0.5385383 0.04002175 -0.01414173]
[-0.06790162 -0.16885438 0.18257616]
[ 0.05480324 -0.03349948 -0.2035435 ]
[ 0.68884266 -0.094559 0.08580841]
[-0.53875304 -0.03667426 -0.00686107]
[ 0.26136117 -0.14300241 0.04771036]
[-0.06146883 -0.03506913 -0.24607944]
[ 0.02373742 -0.0414455 -0.1087627 ]
[-0.47084935 -0.07252825 -0.01783601]
[ 0.66887559 -0.05028923 0.08689585]
[-0.36499023 -0.15538154 -0.10602449]
[ 0.39897757 -0.14861073 -0.1586591 ]
[-0.05344611 -0.18937034 -0.07579399]
[ 0.01870045 -0.171886 -0.1244774 ]
[-0.5727496 -0.11714474 -0.0888422 ]
[ 0.62025387 -0.09816015 -0.08050394]
[ 0.14017167 -0.17901554 -0.09968552]
[-0.03511426 -0.07397216 -0.25708497]
[-0.16759328 -0.13576774 -0.09841746]
[-0.69672747 -0.0729742 -0.03584706]
[ 0.49191761 -0.0835073 -0.15570585]
[ 0.13785095 -0.11294631 -0.15383945]
[ 0.12612221 -0.00476644 0.10914945]
[ 0.06078638 -0.13925049 -0.04350776]
[ 0.24146364 -0.2074467 -0.07032349]
[-0.14805162 -0.26493629 -0.06574267]
[ 0.01049939 0.15533315 -0.06887585]
[-0.07746581 0.09421187 -0.00459785]
[ 0.05891246 0.17318522 0.03958503]
[-0.05706317 -0.00302849 0.01889711]
[-0.04105077 0.09122783 0.01306263]
[-0.09664847 0.17824186 -0.04854476]
[ 0.04403064 -0.00205085 0.042824 ]
[ 0.19599879 -0.00560674 -0.01008214]
[ 0.03210921 0.07655803 -0.00086202]
[-0.02351106 -0.14586059 0.02526092]
[ 0.02003864 0.06096351 0.04713513]
[ 0.15384366 -0.1219016 0.02379801]
[-0.10401179 0.18757312 0.03517435]
[ 0.04847323 0.03902306 0.00878325]
[-0.08934269 0.10156385 -0.0987567 ]
[-0.11143968 -0.07779589 0.01144192]
[ 0.01787757 0.11936668 0.02537317]
[ 0.01160642 0.036014 -0.01284288]
[ 0.00075838 0.03689241 0.01512577]
[ 0.07266308 0.06445297 0.01339698]
[-0.19782268 0.01145398 -0.02139167]
[ 0.03430166 0.13709737 0.01841701]
[ 0.08075269 0.30092799 -0.02705681]
[ 0.00918671 0.04137362 0.00908525]
[-0.08734214 -0.10612491 -0.01628773]
[-0.26909675 -0.36755566 0.54610944]
[ 0.06516807 0.2458186 -0.01757508]
[-0.02725842 0.09263712 -0.00644623]
[ 0.08575142 0.0226102 0.01696553]
[ 0.17235365 0.23380595 -0.16298657]
[-0.03840252 0.08655714 -0.07854006]
[-0.05806153 0.64913937 0.07023196]
[-0.16766007 0.56698742 0.11545025]
[ 0.54819843 0.31192379 0.46126256]
[-0.09962754 0.27629622 0.02916976]
[ 0.05232281 0.40652743 0.10475996]
[-0.24291227 -0.13861722 -0.02620219]
[ 0.09531742 -0.0034726 -0.02076486]
[-0.39345684 0.41950536 0.01389701]
[-0.10757596 -0.25800411 0.08943682]
[-0.02253755 0.04579144 -0.07990071]
[-0.23217009 -0.3270245 0.58525142]]